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The joint probability distributions for three structure factors whose subscripts add to zero, in the general 
case of unequal atoms, are expressed in an exponential form for space groups P 1 and P1. The latter are 
representative of noncentrosymmetric and centrosymmetric space groups respectively. The exponential 
form possesses considerably improved convergence properties over those of the standard asymptotic 
series, although it too remains asymptotic. With the range of values ordinarily obtained for the nor- 
malized structure-factor magnitudes, the exponential forms are quite accurate. However, the accuracy 
deteriorates somewhat as these magnitudes approach their largest possible values. By altering the ex- 
ponential form with the use of a result from the inequality theory, joint probability distributions are 
obtained which are accurate over the entire range of values for the structure-factor magnitudes and are 
most accurate at the largest values. Several probability measures of interest are derived from the joint 
distribution functions such as expected values, variances and the probability that a structure factor has a 
positive sign. Numerical tests indicate that the derived probability measures are very reliable and that 
their validity extends to higher space groups than P 1 and P1. 

Introduction 

The exponential  form of  the jo int  probabi l i ty  distribu- 
tion for three structure factors ( h l + h 2 + h a = 0 )  in the 
equal-atom case has been derived for space groups P 1 
and P1  (Karle, 1972). The virtue of  this form is the con- 
siderably improved convergence properties of  the ex- 

ponential  series over those for the ordinary series ex- 
pansion (Bertaut 1960a, b; Karle, 1972). It is of  interest 
to consider whether exponential  series possessing the 
improved convergence properties can be obtained for 
the jo int  probabil i ty distributions in the case of  unequal  
atoms. It is found that  this is the case and, as occurs for 
equal atoms, terms of the order N -m/z in the exponen- 
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tial series, where N is the number of atoms in the unit 
cell, are associated with polynomials in the structure- 
factor magnitudes whose highest degree is m + 2. This 
reduces the degree of the polynomial, as compared to 
the standard series expansion, by the factor IEI zm-2, 
where IEI represents a normalized structure-factor 
magnitude. The difference between the joint distribu- 
tions for the equal and unequal-atom cases appears 
only in terms of functions of the atomic numbers which 
replace N, the number of atoms in the unit cell, in the 
formulas. 

A variety of formalisms exist for expressing the joint 
probability distributions of complex-valued structure 
factors for the noncentrosymmetric case in terms of 
series expansions employing the associated Laguerre 
polynomials (Hauptman & Karle, 1953b; Bertaut, 
1956; Karle & Hauptman, 1956; Naya, Nitta & Oda, 
1965). Similarly, formalisms exist for forming the joint 
probability distributions of structure factors for the 
centrosymmetric case in terms of Hermite polynomials 
(Hauptman & Karle, 1953a; Bertaut, 1955; Klug, 
1958; Naya, Nitta & Oda, 1964). The series representa- 
tion of the joint distribution is written so that successive 
terms have increasing reciprocal powers of N t/z. Naya, 
Nitta & Oda have carried the series out to the N -s/z 
term. These expressions form a convenient starting point 
for transforming the joint distributions to the exponent- 
ial form. The transformation is accomplished by using a 
simple, but somewhat tedious, algorithm which assures 
that the exponential form, when expanded, results in 
the original series composed of associated Laguerre or 
Hermite polynomials, as the case may be. Considerable 
reduction in the tedium of the manipulations was ac- 
complished by use of a computer program for multi- 
plying and combining terms in the polynomial expres- 
sions. 

In a previous paper concerning the exponential form 
for the equal-atom case (Karle, 1972), the results were 
modified by the application of inequality theory which 
assured accuracy and convergence no matter how 
closely the normalized structure-factor magnitudes ap- 
proached their maximum value [N ~/z for the equal 
atom case, a~/a~/z for unequal atoms; see, for example, 
equations (15) and (32) of the previous reference]. Sim- 
ilar considerations and test calculations will be pre- 
sented in this paper. 

Exponential form for joint distribution 

Noncentrosymmetric reflections (ht + ha + h3 = 0) 
The joint probability distribution function for three 

complex-valued normalized structure factors, E~ = Eh~, 
E2 = Eh2, E3 = Eh3, (h~ + h2 + h 3  = 0), on the assumption 
that the atomic coordinates are random variables 
which are uniformly" and independently distributed, is 
considered for the general case of unequal atoms in 
space group P1. The joint distribution function can be 
written in the exponential form, valid to terms of the 
order N -5/2, 

P(IE,  I, IE21,1E31, ~o1, ~o2, ~o3) 
= ( 1/n3)lE~ E2E3I e x p ( -  IEll 2 -  IE212- IE312) 
× exp ([EIEzE3I cos (q)1 + q% + ~3) 
x {2Q3 + (IGI z + eye.)[-  05 + Q3Q4 + 2033] 
+[605-603Q4-6033] 
+ (lEvi 4 + cyc.)[(2-)07 - (2)0306 - (3)Q4Q5 - 3023Qs 

+ (~-)030~ + 303304 + 20~] 
+ (IE~E2[ z + cyc.)[(½)Q7 + (~)Q3Q6- 0405-170~0~ 

1 2 + (~)0304 + 9Q3Q4 + 10Q33] 
+([EI[ z + cyc.)[- 607 - 5Q3Q6 -t- (~-)0405 + 490~05 
- ( -~- )030~-  2903304- 200~] 
+ [I 8Q7 + 8Q306 - 2704Q5 - 90QZQ5 + 21 Q3Q34 
+ 48Q33Q4 + 26Q~]} 
+ IE, EzE31 z cos 2(~01 + ~0z + q)3)[- (4a)Q6 + 3Q3Q5 
- (a)Q~Q4 - 2Q 4] - (IE, I 4 + cyc.)[(¼ )04] - -  ([Ex E212 
+ cyc.)Q] + (IE, I 2 + cyc.)[Q4 + 032]-[(3)04 + Q32] 
+ ([Ex[ 6 + cyc.)[(-~)06-(¼)04 z] + ([E,141GI z + [ExIZIEz] 4 
+ cyc.)[Q3Q5 - Q~Q4- Q4] 

+ IE~GE31Z[ - Q6 + 6Q3Q5- 3Q3Q4- 604] 
+ (IGI 4 + eye.)[- 0 6 -  Q3Q5 + (~-)0~ + 0~04 + (½)04] 
+ (IGE21 ~ + cyc.)[Q6 - 10Q3Q5 + 7Q3204 + 60~] 
+ ([Exl z + cyc.)[Q6 + 8Q3Q5-(-})Q 2 -  5Q~Q4- 3Q~] 

- [ 0 6  + 60305 - (~-)Q42 - 30~Q4 - (3)Q4] 
+ . . . )  (1) 

where 
Eh= IEhl exp (i~Oh) (2) 

Q,=G/a2 "/z (3) 
N 

a,,= ~ Z j  (4) 
j = l  

and Zj is the atomic number of the jth atom. 
By expanding the second exponential on the right 

side of equation (1), a series expansion is obtained 
which is identical to equation (67) of Naya, Nitta & 
Oda (1965) if Q,, is substituted for Z, (the coefficient of 
the entire Z4Z5 term should be ¼ and that for the second 
expression of the Z~Z5 term should be 3). The initial 
factor IE~EEE3[ of equation (1) is understood to be in- 
serted into the latter equation. In this notation the Q, 
replace the Z,, of Naya et al. to avoid confusion with 
the atomic numbers appearing in equations (3) and (4). 
Although equation (4) is a common approximation, 
alternative definitions of the 0 ,  might be considered, 
since normalized structure factors for experimental 
data are derived from structure factors having variable 
scattering factors. One alternative definition is, 

Q,,= (Q,,(h))h = (½) ~ [s.(h)/s~/Z(h)] (5) 
h 

where h ranges over the three values h~, hz, h3, 
N 

s,,(h)= ~ f•(h) 
d = !  

(6) 
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and fi(h) is the atomic scattering factor for the j t h  
atom. In the case of equal atoms, Q,,=N -°'-z)/2. The 
substitution of these quantities into equation (1) will 
lead to the joint probability distribution derived pre- 
viously [Karle, 1972, equation (1)]. 

Several results appearing in the latter reference have 
correspondences in the unequal atom case which may 
be obtained by use of equation (1). The polynomial 
appearing under the braces in (1) is represented by p,, 
giving, 

p,,=p,,(IE, I, IEzl, I//31) = {2Q3 + (I//112 + cyc.)[-  Q5 
+ Q3Q4+ 2Q3]+ . . .  +[18Qv+8Q3Q6-27Q405 
- 90Q]Os + 21Q3Q] + 48Q304 + 26Q~]}. (7) 

With this definition, the probability distribution of the 
s u m  

(/),23 = cp~ + rp2 + ~o3 (8) 

given the values of IE, I, IE21 and IE31 is 

P1(~123; ]Ed, IE2I,IE3I)~_KI exp [IE~E2E3IP~ cos ~x23 
+ IE1E2E312v c o s  2~123] (9) 

where 
v=  -(¼)06 + 3Q3Qs-(3)Q~Q4-2Q~, (10) 

the normalizing constant/<1 is 

g~=[2rclo(IE~E2E31P,,)+ 2rclE~E2E312vlz(IEIE2E3IP,,)] -~ 
(11) 

and the I, are Bessel functions of imaginary argument. 
The expected value for cos q~23, determined from equa- 
tion (9) is 

<cos ¢'~23>- 
(1 +½IEIE2E3IZv) Ii(wu) +½IExE2E312v I3(wu) 

to--o-o-o-o-o-o-o-o(~.) Io(w,,) (12) 

where 

1 + IE~EzE312v Iz(w,,) 
Io(W.) 

w.,= IE~EzEzlp. . (13) 

The probability distribution function (9) should af- 
ford accurate values for the expected values of the 
cosine invariants, cos (for + q~2 + cp3), for the magnitudes 
of the normalized structure factors usually obtained 
from experiment. It will be seen, in fact, that optimal re- 
sults are for the most part obtained by using Pu out to 
the N-3/2 term and ignoring the N -5/2 term. Neverthe- 
less, the maximum value for [E[ is crl/cr~/2 and although 
this large value is rarely approached, at such an extreme 
value the accuracy of the distributions (1) and (9) de- 
teriorates. In the paper concerning the equal-atom case 
(Karle, 1972), use was made of inequality theory to 
alter the distribution (9) with a function which very 
closely approximates (9) in the range of the normally 
observed values for the IEI and which, in addition, is 
accurate at the largest values for IEI. A similar modifi- 
cation can be applied to the case of unequal atoms. In 
a purely empirical fashion, and in analogy with the form 

of the corresponding joint probability distribution for 
equal atoms [Karle, 1972, equation (15)], the suggested 
probability distribution, applicable over the full range 
of IEI values and, in particular, the largest ones, is 

[ 2cr31E1EzE31 ] P,(cP123;IElI,IE21,1E31)~_K2 e x p  / ........... ~/2q,- ..... cos  ~123 

(14) 
where 

L., ,, [2cr3IE1E2E3[ -1 

ql=l+21uif2u31-1UllZ-lU212-1U312 (16) 
and the unitary structure factor, U, is defined by 

U= Ecr~/Z/cr~ . (17) 

For equal atoms, Q3 = cr3/°~z/2 = N-a/2 and also a~/z/al = 
N-1/2 

The expected value of the cosine invariant may be ob- 
tained from P2 giving 

i~ ( 2cr31E1EzE3[ 
~/2ql ) 

<cos (~0~ +q~2 +fP3)> ~- lo(2Cr~lExE2E3 l ,  cr32/2q, ) . (18) 

As discussed previously (Karle, 1972), the following 
probability distributions are equal, 

P2(~123; IExI, IE2I, IE31)= P3(~I ; q;2, ~o3, lEd, lE2l, lE31) 
=P4(~0~+~02; ~03,1ElI,IE21,IE31) (19) 

each having/£2 as a normalizing constant. The proba- 
bility distribution for ~0~, given many sets of ~02,f03, IEzl, 
IE31 satisfying hi + h 2 + h 3 = 0  can be obtained by multi- 
plying the individual distributions of type P3 together 
and renormalizing. The resulting distribution is esti- 
mated to be a good approximation, but it is not an exact 
result since the individual distributions P3 a r e  not com- 
pletely independent. Equations (3.25) and (3.33)* of 
Karle & Karle (1966) and additional mathematical ex- 
pressions in §§ 3-2, 3.3 and 3.4 can be altered to be con- 
sistent with the results of this paper by redefining the 
symbol tc of equation (3.20) by dividing by ql to give 

tc(h,k) = 2cr3cr;3/21EhEkEh_ul/ql (20) 

where hi =h,  h 2 = - k  and h3 = - h  + k. The above re- 
ferenced equation (3.33) expresses the variance of ~0~ 
given fixed, specified sets of ~o2,~o3,1E21,1E31 satisfying 
h l + h 2 + h 3 = 0 .  

An expression for the variance of g5123(- zc < (Px23 < z0 
can be readily obtained from equation (14). The expect- 
ed value of q5123 is zero and the variance is given by 

n 2 ~ I2,(x) 
Variance of ~123 .... +[I0(x)] -1 ~ n z 

n=l 

-4[I0(Ic)]-' Z I2,+l(K) ,=0 (2n+1) 2 . (21) 

* Sign before last term of equation (3.33) should be minus. 
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This formula is the same as the variance formula for 
Ct, when there is only one member  in the given set of  
fixed, specified ¢2, ~0a, lEE[, [Ea[. 

Another  variance of  interest is the variance of  the 
cosine invariant,  cos ¢P~z3, which can be readily ob- 
tained from equation (14). The result is 

I,(K) 120¢) 
Variance of  cos ~123 = 1 - tCIoQc) - 12(ic) (22) 

where ~-=t~-(h,k) as defined in equation (20) or, alter- 
natively, q/- I may be replaced in equation (20) by p,, de- 
fined by equation (7). The numerical tests will show that  
p,, carried out  to the N -a/2 term, as given by equation 
(30), affords very accurate results. The form of this 
variance formula is the same as one derived previously 
(Fisher, Hancock & Hauptman,  1970) for the case of 
equal atoms. Equation (22) differs from the latter ex- 
pression in that  q~ replaces unity and t73/o ~/2 replaces 
N -112 for equal atoms. 

Centrosymmetric reflections (hi + h2 + ha = 0) 
The joint  probabil i ty distribution function for three 

normalized structure factors, E l = E h p  E2=Eh2, Ea = 
Eh3 , (h 1 + h 2 + h 3 = 0), on the assumption that  the atomic 
coordinates are random variables which are uniformly 
and independently distributed, is considered for the 
general case of  unequal  atoms in space group Pi .  This 
function can be written in the exponential form, valid 
to terms of  the order N - s / z  , 

P(EI, E2,E3)=(½703/2 exp [ - (½)  (E 2 + E ] + E])] 

x exp (EtEzE3{Q3+(E 2 +cyc.)[-(½)Qs+(½)Q3Q4 
+ Q31 + [(})Qs_(O)QaQ4_4Q]] 
+(E 4 +cyc.)[(½)Q7-(½)Q3Q6-(¼)Q4Qs-(3-)Q2Qs 
+(k)Q3Q2 s 3 + (z)QaQ4 + Q~] 
+ (E~E 2 + cyc.)[(¼)Q7 + (¼)QaQ6-(½)Q4Qs - (~-)Q2Qs 
+(¼)QsQaZ +to'~n3,o + 5/3sl 

k~',/h:~ 3 h:¢ 4 ~'.~ 3J 

+ ( E  2 ÷ c y c . ) [ - ( ~ ) Q ~ -  ~ 0 ÷ ~ (-~-)_3Q~ (--~)Q4Q~ 
+ (~)QZQ~ - (~ )Q~Q~-  (-~)Q~Q4-14Q~1 
÷ [(-~)Q~ ÷ (~- )Q~Q~-  (-~)Q,Q~ - (~ ~--~)Q~Q~ 
+ 9 9  2 (-a-)Q3Q4 + (-9-~-) Q] Q4 + 25Q3S]} 
-(E~ +cyc.)[(~)Q4]-(E~E~ + cyc.)[({)Qa 2] 
+ ( E2 + cyc.)[(3)Q, + (½) Q3q -[(-~)Q4 + (½)QZ] 

+ ( E  6 + cyc.)[(-iJ~) Q6 - (-~-)Q4 ~] 
+(E4E 2 + EZtE 4 +cyc.)[(½)QsQs-(½)O~aQ4-(½)Q 4] 

2 2 3 7 + 9 9 2 + EIEaE3[-(g)Q6 (2)QaQs-(-~)Q3Q4-4Q 4] 
2 1  2 +  .,! 2 +(E 4 +cyc.)[-({)Q6-(½)Q3Qs+(-f-6)Q4 (~-)QaQ4 

+ (¼)Q4] + (E2E z + cyc.)[(j})Q6-(-~-)Q3Q5 + (-22~-) Q2 Q4 

+ 4Q 4] + (E 2 + cyc.) [ (~)  Q6 + 6Q3Q5 - 3Q42 - (-Y-)Q32 Q4 
_ 2 Q 4 ]  ~ 3 + 9 - [(-g-)Q6 (~)Q3Qs-(9)QZa-(9)Q~Q4-Q~] 
+ . . . ) .  (23) 

Expansion of  the second exponential in equation (23) 
gives a series expansion that  is identical with equation 
(III-2) of Naya,  Nit ta  & Oda (1964). The substitution 

of  O,,= N -(n-2)12 into (23) for the case of  equal atoms 
gives the joint  probabil i ty distribution derived pre- 
viously [Karle, 1972, equation (22)]. From equation 
(23), and a procedure followed in the latter reference, 
it is possible to derive the probabili ty that  the sign of 
Et is positive given IEll, E2 and Es, obtaining 

P+(E,;IE, I,E2,Ea)=½+½ tanhpu,  lEllE2E a (24) 

where Plu is the polynomial  appearing within the braces 
in (23), 

P , - =  {Qa + (E~ + cyc . ) [ -  (½)Qs + (½)Q304 + Q31 
+ . . .  +[(-~Z)Q7+ . . .  +(--~-)Q3Q4+25Qa]}. (25) 

As with the polynomial  p,, for noncentrosymmetr ic  
crystals, optimal results are probably obtained from 
Pl, when this polynomial  is carried to terms associated 
with N -3/z. 

It is suggested that  good accuracy may be obtained 
over the full range of  possible values for the [El if 
Qaq? ~, defined by equation (16), were to replace Pl, 
in equation (24), giving 

P + (E, ; IE, I, E2, E3) = ½ + { tanh °'3[---E'lE~e3 
032/2q I (26) 

Insight into the basis for this alteration may be ob- 
tained by referring to the previous paper concerning 
probabili ty distributions for the case of equal a toms 
(Karle, 1972). 

2-Q 3"IF, E2E3[ 

2 4 6 8 I0 12 14 16 18 
1.0 ![- ...... '/]-/ . . . . . . . . . . .  ~ ? . ~ = . - r "  

i ~  I1 I.OO 

0.6 0.95 

<C0S @ > 

0.4 ] 0.90 

0.2 i/ S 0.85 

0.80 
2 ' 4 ' ~ ' 

Fig. 1. Variation of expected values of the cosine invariants 
with 2]EIE, EaIt;a/t~ 1/2 for N-acetyl neuraminic acid (space 
group P21). The crosses represent values computed experi- 
mentally from a large number of invariants and, in the 
enlarged portions, the arms of the crosses measured from 
the crossover point represent three standard deviations. The 
solid curves represent the variation of several theoretical 
formulas obtained from the exponential form of the joint 
probability distribution carried to the N -x/2 term (S), 
equation (29), the N -3/2 term (J), equation (30), the modifi- 
cation by means of inequality theory (I), equation (31) and 
also from the standard series form of the joint distribution 
carried to the N -an term (Pan) and to the N -s.'2 term (P5/2). 
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When there are several sets of known Eh2 and Eh3 
such that h~+h2+ha=0 ,  and it is assumed that the 
individual measures of the probability are independent 
to a good approximation, equation (24) becomes 

Y t731Ehl [EkEh_l,/ql(h,k)] 
P+(Eh)=½+½ tanh - / - ( 2 7 )  

0-3/2 

where h~=h, h2=k and h 3 = h - k .  The hyperbolic tan- 
gent formula (27) may be compared to the one com- 
monly used (Woolfson, 1954; Cochran & Woolfson 
1955). If q~ is replaced by one, the latter is obtained. 
Since 0 < q~_< 1 equations (26) and (27) would lead to 
higher measures of the probability, particularly when 
the formulas employ the larger ]El values. 

Numerical tests 

A statistical quantity of particular interest is the ex- 
pected value of a cosine invariant, (cos (rphl+~0hZ+ 
(;ha)) where hi + h2 + h3 = 0. The joint probability distri- 
butions presented in this paper offer several measures 
of this quantity. For example, several formulas accrue 
from equation (12) depending upon the order of the 
term retained for p,, and whether the polynomial v is 
included or not. An additional relation formulated by 
use of inequality theory is given by equation (18). 

1.0 

0.8 

0.6 

<cos @> 

0.4 

0.2 

2"Q 3"IE,E~E3I 
2 4 6 8 I0 12 14 16 18 

2 4 6 8 

1.00 

0.95 

0.90 

0.85 

Fig. 2. Variation of expected values of the cosine invariants 
with 21E1E2E31a3/~/z for a bromine substitution of N- 
acetyl neuraminic acid (space group P21). The crosses 
represent values computed experimentally from a large 
number of invatiants and, in the enlarged portions, the arms 
of the crosses measured from the crossover point represent 
three standard deviations. The solid curves represent the 
variation of several theoretical formulas obtained from the 
exponential form of the joint probability distribution carried 
to the N -1/2 term (S), equation (29), the N -3/2 term (J), 
equation (30), the modification by means of inequality 
theory (I), equation (31) and also from the standard series 
form of the joint distribution carried to the N -3/e term 
(/3/2) and to the N -5/2 term (Ps/z). 

Owing to the statistical character of an expected 
value, an adequate evaluation of the theory requires 
comparison with a large amount of crystallographic 
data. To assure an adequate sample, a very large num- 
ber of structure factors were computed for the crystal 
models which were employed. Of interest is the deter- 
mination of the best form of the probability theory to 
be used to compute the expected values and its appli- 
cability to the higher space groups. 

Numerical tests were performed in space groups P21, 
P212~2~ and P41212. For space group P2~, the structure 
of N-acetyl neuraminic acid (Flippen, 1973a) was used. 
The structure contains non-hydrogen atoms of almost 
equal atomic number (CllHz9NO9 .2H20). In order to 
test the case of unequal atoms, one of the oxygen atoms 
in the N-acetyl neuraminic acid structure was replaced 
by a sulfur atom and in another case a hydroxyl group 
was replaced by a bromine atom. For space group 
P2~2~2~, the structure of cis-thymine glycol (Flippen, 
1973b) was used as a test structure. This compound 
has the molecular formula CsHsN204. For space group 
P4~2z2, the structure of 3,4-dehydroproline anhydride 
(C~0H~0NzO2) was used (Karle, 1973). In an additional 
test, the oxygen atoms were replaced by sulfur atoms. 
Figs. 1 and 2 and Table 1 characterize the results. 

Figs. 1 and 2 show how various theoretical measures 
of the expected values (cos tb~2a) vary with 2Q3IE~E2Esl 
where Q3=a3/aa22/z. The calculations include expected 
values based on the standard series form of the joint 
distribution carried out to the N-3/5 term and the N-S/2 
term, the exponential form carried out to the N -u2 
term (S) and the N -3/2 term (J) and also the form 
based on inequality theory (I), equation (18). The latter 
three can be summarized as 

(cos cPna)=II(tIE~EzEal)/Io(tIExEzE3I) (28) 
where 

t=2Q3 (29) 
or 

t =  2Q3 + (lEvi z + cyc.) ( -  Qs + QaQ4 + 2Q 3) 
+6(Qs-Q3Q4-Q])  (30) 

or 
t=2QJql  (31) 

respectively. Fig. 1 concerns the essentially equal-atom 
case of N-acetyl neuraminic acid and Fig. 2 concerns 
the case in which a hydroxyl group is replaced with a 
bromine atom. Experimental values computed from 
large numbers of invariants (see Table 1) are indicated 
by the crosses. It was convenient in calculating the 
functions illustrated in Figs. 1 and 2 to impose a con- 
straint on the relative values of lEd, IEzl, and IE3[, 
namely, IEll--IE21--IE31--IE1E2E311/L It can be shown 
however, that this constraint leads to results that are 
consistent with a realistic sample taken from an experi- 
mental distribution of IEI magnitudes. The statistical 
quantities (cos ~0)j and (cos ~0)i in Table 1 are aver- 
ages of many individual calculations on such IEll, IE2I, 
IE3I triples; no constraint was imposed, yet all of these 
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values agree with the values of  the curves J and I of  
Figs. 1 and 2 to better than 1%. 

Several results are apparent.  The series form of the 
joint  distribution is suitable only at small values of  the 
argument  and deteriorates rapidly as the magnitudes of 
the [El increase. The exponential  form of the joint  dis- 
tribution carried out to the N-3/2 term as given by (30) 
affords a very good fit for the equal-atom case and the 
inequality theory is only slightly high. The often em- 
ployed exponential  form carried out only to the N -~/2 
term, as given by (29), results in expected values which 
are several percentages too low. The same results were 
obtained for the sulfur-substituted N-acetyl neuraminic 
acid. Essentially the same results were also found for 
the bromine-substi tuted N-acetyl neuraminic acid, Fig. 2. 
In this case the inequality form (31) is somewhat closer 
to the experimental calculations than the exponential  
form out to the N-3/z term (30). However the exponen- 
tial form out to the N-~/z term is still significantly too 
low. It also turns out that including the N-S/z term 
in the exponential form does not improve the accuracy 
of the agreement and, in fact, causes a severe diver- 
gence as the magnitude of the [El increase. 

Examples of the details of  the numerical  comparisons,  
some of  which are included in Figs. 1 and 2, are shown 
in Table 1. The expected values for the cosine invariants 
and the corresponding variances, equation (22), to be 
associated with an individual invariant  were computed 
from the crystal models and from several theoretical 
formulas. The subscript Exp implies that values were 
obtained directly from the large number  of cosine in- 
variants computed from the crystal data and the sub- 
scripts S, J and I labeling the expected values refer to 
equation (28) associated with equations (29), (30) and 
(31) respectively. If  the argument 1,- of  the variance 
formula (22) were to be replaced by t IExE2E3[, the de- 
finitions (29), (30) and (31) would again correspond to 
subscripts S, J and I respectively, as applied to the cal- 
culations of  the variances. The ranges of  values for the 
function 2Q3IEIEzE3[ covered by each calculation are 

shown in the first row of Table 1 and the number  of  in- 
variants entering into each such range is shown in the 
second row. The last row presents measures of the 
standard deviations to be associated with the expected 
values obtained from the large numbers  of the cosine 
invariants. It is seen that in many cases agreement be- 
tween the experimental test calculation and theory is 
within two or three standard deviations. The bromine 
substituent shows greater deviations. The good agree- 
ment with the empirical calculations and equations (30) 
and (31) shown in Figs. 1 and 2 is thus further substan- 
tiated by Table 1. As might be expected, the variances 
of individual cosine invariants show the same pattern 
of  agreement. 

Extensive tests have not been made on the theoretical 
expressions obtained in this paper for centrosymmetric 
crystals. However, some test calculations were per- 
formed for a molecule containing two moderately 
heavy atoms (C31H25C1N304P) which crystallizes in 
space group P I (Gilardi & Karle, 1972). Experimental  
values of P+(E~ ;[E~I, IEzI, IE3I) were obtained by ex- 
amining over 50000 structure invariants and sorting 
them into intervals of  similar ]E~E2E31 values. The sta- 
tistical values were then compared with those predicted 
from the theoretical expressions (24) and (26) and also 
with the commonly  used hyperbolic tangent formula,  
equation (26) with q~ replaced by unity. 

The agreement found is similar to that obtained in 
the numerical tests with noncentrosymmetric  crystals. 
It was found that the commonly  used hyperbolic tan- 
gent formula consistently underestimates P+, whereas 
the predictions from equations (24) and (26) fit the ex- 
perimental values quite well over the entire range of 
values for IE~EzE31. Equation (26), for example, will 
yield higher estimates for P+ because of qx < 1 when 
the lEt of  interest differ from zero. Addit ional  evidence 
has been presented by Tsoucaris (1970, p. 496) indi- 
cating that the standard formula for P+ (q~ replaced by 
unity) underestimates this probabil i ty measure and a 
correction factor was suggested. 

Table 1. Expected values (cos @)Exp for the cosine invariants computed for N-acetyl neuraminic acid and 
substitutions from a large number of  invariants are compared with theoretical estimates 

The theoretical estimates were obtained from the exponential form of the joint probability distribution carried to the N-I/2 
term (S), equation (29), the N-3/, term (J), equation (30), and the modification by means of inequality theory (1), equation (31). 
The lange of values for 21E1E,_E3IaJaI 3/z is shown in the first row and the number of invariants included in this range is shown 
in the second row. The variances of individual cosine invariants are also listed as well as the value of one standard deviation 
(last row) of the calculation of (cos q~)E,o. 

2(CtxHIgNOg. 2HzO) 2(CttH19NOsS. 2H,O) 
1.21- 2.43- 3.64- 5.46- 1.55- 2.41- 3.44- >6.87 

2Q31EtE2E31 1.52 2.73 4.25 6.06 1.72 2.75 4.13 
No. of Invariants 91588 26469 8 1 1 4  1 1 7 1  39318  35241 32943 1449 
(cos q))E~o 0"6084 0"8208 0"8927 0"9367 0"6787 0"8204 0-8881 0"9514 
(cos q~)s 0.6067 0"8205 0"8972 0.9389 0"6766 0.8203 0-8903 0.9577 
<cos q~>~ 0"6260 0"8328 0"9057 0"9472 0"6914 0"8308 0"8980 0"9637 
<cos~>s 0-5641 0"7714 0"8588 0"9079 0"6274 0-7713 0"8511 0"9332 
(Var. cos q~)E,p 0.235 0.064 0.022 0 -008  0.1806 0.0655 0.0244 0.0053 
(Var. cos q~)s 0.239 0-066 0"022 0 . 0 0 8  0.1819 0.0666 0.0248 0.0039 
(Var. cos q~)~ 0.223 0.058 0.018 0.006 0.1696 0.0593 0.0214 0.0030 
(Var. cos q~)s 0.272 0-104 0.041 0.017 0-2223 0-1038 0.0460 0.0094 
(Vat. (cos @)Exp) 1/" 0"0016 0"0016 0"0016 0"0026 0"0021 0"0014 0"0009 0"0019 

2(Cx,H,sNO~Br. 2H20) 
2-91- 3"88- 5"81- 9-04- 

3"23 4-20 6-46 10"34 

86926 47830 9760 5182 
0-8659 0-8985 0"9364 0-9634 
0"8812 0"9189 0"9541 0"9750 
0-8616 0"9041 0"9449 0-9704 
0-8147 0"8645 0"9138 0-9459 
0"0365 0-0207 0"0082 0-0024 
0"0291 0-0133 0"0044 0"0016 
0"0397 0"0187 0"0063 0-0019 
0"0705 0-0380 0"0151 0-0061 
0"0007 0"0007 0"0009 0"0007 



J. K A R L E  AND R. D. G I L A R D I  407 

Concluding remarks 

The exponential form of the joint probability distribu- 
tion for cos (~0hl + ~0hz + q%) has been shown in the test 
examples to be very accurate when carried out to the 
N -3/z term. In the almost equal-atom test cases this 
form gave excellent agreement throughout the test 
range. It was only superseded by the modification based 
on inequality theory as the relative weight of a sub- 
stituted heavy atom began to increase significantly. 
There are extreme circumstances conceivable involving 
the substitution of a very heavy atom in which only the 
form modified by inequality theory would afford valid 
measures of the expected values and variances. 

There are two remarkable points of interest. The 
first is the rather broad insensitivity of the statistical 
measures, such as expected values and variances, to the 
symmetry of the space group. Very accurate agreement 
was obtained between theory and calculated values for 
space groups ranging from the monoclinic to the tetrag- 
onal systems in spite of the fact that the theory was 
derived for the triclinic space group P1. In fact, the 
good agreement was not affected by including in the 
calculations those invariants occurring within the sphere 
of data which were composed solely of pure-real and 
pure-imaginary structure factors. 

The second point worthy of notice is the manner in 
which the theoretical results were derived as compared 
to the manner in which the comparison calculations are 
carried out. In developing the theory, the random 
variables are chosen to be the U, representing the co- 
ordinates of the atoms, rather than the h. However, for 
any crystal the coordinates are fixed and it is pertinent 
to develop the theories in which the h are the random 
variables. Clearly, the comparison calculations for ex- 
pected values, for example, are performed by taking 
averages over a very large number of h vectors for some 
given crystal structure. In fact, the theory of interest is 
precisely the one for which the crystal structure would 
be fixed and the reciprocal vectors are the random 
variables. The very good agreement between theory and 
calculation shown in the test examples suggests there- 
fore that the probability distribution obtained from 
holding h constant and employing the U as random 
variables may be equal to or a very good approxima- 
tion to the desired distribution in which the U are held 
constant and the h are the random variables. Certainly 
the statistical quantities derived from the theory are 
very accurate. Using the rj as the random variables 
plays the role of a mathematical strategem designed to 
obtain a result whose interpretation and application 
are different from the basis on which it was derived. It 
would be possible to carry through the development of 
the joint probability distribution with the choice of h 
as the random variable and it might be of interest to 
do so for comparison purposes. However, it is con- 
venient to follow the path presented here, namely, to 
employ the U as random variables, and the results justi- 
fy this mode of operation. 

The question arises concerning why the rj can replace 
the h as random variables. The answer appears to be 
connected with the fact that these quantities occur as the 
product h. rj in the arguments of the trigonometric terms 
defining the structure factors. It is these trigonometric 
functions which are manipulated in the algorithms for 
producing the joint probability distributions. The frac- 
tional part of h .  rj is uniformly distributed in the inter- 
val (0,1) if h is fixed and the coordinates of r i are uni- 
formly and independently distributed in the interval 
(0,1). The important point is that this is equally true 
about h .  U if the coordinates of U are fixed and ration- 
ally independent and the components of h are uniform- 
ly and independently distributed over all the integers 
(Hauptman & Karle, 1953a, p. 83). As a practical 
matter this circumstance is fairly well realized if the 
components of h cover a large number of integers and a 
coordinate of U is a rational number significantly dif- 
ferent from zero and having a fairly large denominator. 
Atoms in fixed, special positions could cause difficul- 
ties. Thus, because of the special mathematical proper- 
ties of h .  U, namely, the equivalent behavior of its 
fractional part in the interval (0, 1) whether h or U is 
employed as a random variable, it is possible to use 
either variable to obtain the joint probability distribu- 
tion. This discussion is not proof that the alternative 
choices are always possible under the general cor.di- 
tions specified for the h and U, but it appears to ex- 
plain the good agreement obtained in this type of anal- 
ysis. 
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